On Backlund transformations and identities in bilinear form

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1990 J. Phys. A: Math. Gen. 235661
(http://iopscience.iop.org/0305-4470/23/23/035)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 129.252.86.83
The article was downloaded on 01/06/2010 at 09:54

Please note that terms and conditions apply.

COMMENT

On Bäcklund transformations and identities in bilinear form

G Post
Faculty of Applied Mathematics, University of Twente, PO Box 217, 7500 AE Enschede, The Netherlands

Received 6 July 1990

Abstract

For bilinear equations of the form $P(D) f \cdot f=0$ we find all possibilities for rewriting $g^{2} P(D) f \cdot f-f^{2} P(D) g \cdot g=0$ in the form $Q(D) f \cdot g=0$. This is the first step in finding a Bäcklund transformation.

1. Introduction

In this comment we study Bäcklund transformations in bilinear form. This technique was introduced by Hirota [1,2]. Let us start with a brief sketch of the method, and formulate the questions that we want to answer. We suppose that we are given an equation in bilinear form

$$
\begin{equation*}
P(D) f \cdot f=0 \tag{1}
\end{equation*}
$$

Here P is a polynomial in, say, n variables, i.e.

$$
P\left(D_{1}, \ldots, D_{n}\right)=\sum c_{\alpha} D^{\alpha}
$$

where $\alpha=\left(\alpha_{1}, \ldots, \alpha_{n}\right)$ and $D^{\alpha}=D_{n}^{\alpha_{n}} \cdots D_{1}^{\alpha_{1}}$, where

$$
\begin{aligned}
& D_{n}^{\alpha_{n}} \cdots D_{1}^{\alpha_{1}} f \cdot g=\frac{\partial^{\alpha_{n}}}{\partial y_{n}^{\alpha_{n}}} \cdots \frac{\partial^{\alpha_{1}}}{\partial y_{1}^{\alpha_{1}}} f\left(x_{1}+y_{1}, \ldots, x_{n}+y_{n}\right) \\
& \times\left. g\left(x_{1}-y_{1}, \ldots, x_{n}-y_{n}\right)\right|_{y_{1}=\cdots=y_{n}=0}
\end{aligned}
$$

To find a Bäcklund transformation, we apply the following trick: consider the equation

$$
\begin{equation*}
g^{2} P(D) f \cdot f-f^{2} P(D) g \cdot g=0 \tag{2}
\end{equation*}
$$

Then we note that for a solution f, g to (2), the following holds:

$$
f \text { is a solution of }(1) \Leftrightarrow g \text { is a solution of }(1) .
$$

Suppose that we could rewrite (2) in the following form:

$$
\begin{equation*}
Q(D)\left[Q_{1}(D)(f \cdot g) \cdot Q_{2}(D)(f \cdot g)\right]=0 \tag{3}
\end{equation*}
$$

Then by suitably splitting Q we derive two equations:

$$
\begin{align*}
& P_{1}(D) f \cdot g=0 \\
& P_{2}(D) f \cdot g=0 . \tag{4}
\end{align*}
$$

The system (4) can be called a Bäcklund transformation for $P(D) f \cdot f=0$. Namely, suppose g is given; then a solution f to equation (4) will also satisfy $P(D) f \cdot f=0$.

The process of sensibly splitting Q is strongly equation-dependent; it seems unclear in general how to perform it. Two other general questions remain:

1. Is there for any P a solution Q ?
2. Is this solution unique? If not, can one find all possibilities?

In this comment we answer these questions. The answer to the first is yes; the proof is already essentially in Hirota [1,2]. This solution is not at all unique. We give all possibilities in terms of a generating identity. The proof that these are all the possibilities is the most difficult part, and not fully included here. For complete proofs, see [3].

2. Algebraic background; partial solution

Let J denote the space of multi-indices $\left(i_{1}, \ldots, i_{n}\right)$. In practice we will encounter $f^{(i)}$ and $g^{(j)}(i, j \in J)$, which will substitute for the partial derivatives. We will deal with the polynomial algebra $\mathcal{A}=\mathbb{R}\left[f^{(i)}, g^{(j)}\right],(i, j \in J)$. In this algebra, we have derivations $\partial_{r}(r=1 \cdots n)$ which act in the obvious way. In particular

$$
\partial_{r}\left(f^{(i)}\right)=f^{\left(i+1_{r}\right)} \text { and } \partial_{r}\left(g^{(j)}\right)=g^{\left(j+1_{r}\right)}
$$

where $1_{r}=(0, \ldots, 0,1,0, \ldots, 0)$, the r th basis vector.
Corresponding to ∂_{r}, we introduce the linear map \mathcal{D}_{r} (the Hirota derivative) as a $\operatorname{map} \mathcal{A} \otimes \mathcal{A} \rightarrow \mathcal{A} \otimes \mathcal{A}$, by

$$
\mathcal{D}_{r}(a \otimes b)=\partial_{r}(a) \otimes b-a \otimes \partial_{r}(b) \quad(r=1, \ldots, n)
$$

The derivative ∂_{r} is also extended to $\mathcal{A} \otimes \mathcal{A}$ by

$$
\partial_{r}(a \otimes b)=\partial_{r}(a) \otimes b+a \otimes \partial_{r}(b)
$$

Obviously, we can define a Hirota derivative corresponding to any derivation of \mathcal{A}.
Lemma 1. Let $\mathcal{D}=\mathcal{D}_{r}$ and $\partial=\partial_{r}$ and \mathcal{A} be as above. Then

$$
\exp (\epsilon \mathcal{D})(a \otimes b)=\exp (\epsilon \partial) a \otimes \exp (-\epsilon \partial) b
$$

The equality is meant as formal power series, and follows by computing homogeneous terms with reference to $\epsilon^{i}, \quad i=0,1,2, \ldots$.

Note that our definition of \mathcal{D}_{r} differs from the usual one in the following sense: the image is again in $\mathcal{A} \otimes \mathcal{A}$ and not in \mathcal{A}. This is a major difference, as we will see shortly. To get the usual Hirota derivatives D_{r} we have to project the image of \mathcal{D}_{r} to $\mathcal{A}:$ let $\pi: \mathcal{A} \otimes \mathcal{A} \rightarrow \mathcal{A}, \pi\left(\sum a_{i} \otimes b_{i}\right)=\sum a_{i} b_{i}$, denote this projection. Then

$$
D_{r}(a \otimes b):=\pi \mathcal{D}_{r}(a \otimes b)
$$

and more generally

$$
D_{r}^{k}(a \otimes b):=\pi \mathcal{D}_{r}^{k}(a \otimes b), k=1,2, \ldots .
$$

The exchange formula is central in this comment.

Theorem 1 (cf Hirota). Let $\partial_{\alpha}=\sum \alpha_{i} \partial_{i}, \partial_{\beta}=\sum \beta_{i} \partial_{i}$ and $\partial_{\gamma}=\sum \gamma_{i} \partial_{i}$ and let D_{α} etc. be the corresponding (projected) Hirota derivatives. Then we have for all $a, b, c, d \in \mathcal{A}$

$$
\begin{align*}
& \exp \left(D_{\alpha}\right)\left(\exp \left(D_{\beta}\right)(a \otimes b) \otimes \exp \left(D_{\gamma}\right)(c \otimes d)\right) \\
&= \exp \left(\frac{1}{2}\left(D_{\beta}-D_{\gamma}\right)\right)\left(\exp \left(\frac{1}{2}\left(D_{\beta}+D_{\gamma}\right)+D_{\alpha}\right)(a \otimes d)\right. \\
&\left.\otimes \exp \left(\frac{1}{2}\left(D_{\beta}+D_{\gamma}\right)-D_{\alpha}\right)(c \otimes b)\right) \tag{5}
\end{align*}
$$

Proof. The proof is based on lemma 1: expressing all the \mathcal{D} in their corresponding ∂ and projecting on \mathcal{A} gives the result immediately.

Note that this identity solves our first question by taking $a=b=f$ and $c=d=g$. Using the fact that $\exp \left(\sum \epsilon_{i} \mathcal{D}_{i}\right)=\prod \exp \left(\epsilon_{i} \mathcal{D}_{i}\right)$, we see that for three multi-indices $k, l, m \in J$, the coefficient of $\alpha^{k} \beta^{l} \gamma^{m}$ in (5) expresses

$$
D^{k}\left(D^{l}(f \cdot f) \cdot D^{m}(g \cdot g)\right)
$$

in terms of

$$
D^{\bullet}\left(D^{\bullet}(f \cdot g) \cdot D^{\bullet}(g \cdot f)\right)
$$

Moreover we note that such an expression is not unique. If we take $a=c=f$ and $b=d=g$, then again comparing the coefficients of $\alpha^{k} \beta^{l} \gamma^{m}$ in (5), we see that $D^{k}\left(D^{l}(f \cdot g) \cdot D^{m}(f \cdot g)\right)$ can be re-expressed. These observations solve a part of our problem; however, they do not solve the most difficult part. It is important to find all possibilities, hence all identities of the form

$$
\begin{equation*}
D^{k}\left(D^{\prime}(f \cdot g) \cdot D^{m}(f \cdot g)\right)=\sum D^{\cdot}\left(D^{\bullet}(f \cdot g) \cdot D^{\bullet}(f \cdot g)\right) \tag{6}
\end{equation*}
$$

This problem will be solved in the next section. The answer is slightly surprising: equation (5) already contains all non-trivial identities!

3. Finding all identities

To study the identities of the form (6) more closely, we introduce two subspaces of $\mathcal{A} \otimes \mathcal{A}$. The first one, denoted by \mathcal{B}, is the linear space spanned by the elements $\left\{f^{(i)} \otimes g^{(j)}\right\}, \quad(i, j \in J)$. Clearly these elements form a basis. Note that $\left.\pi\right|_{\mathcal{B}}$ is injective. This allows us to view \mathcal{B} as a subspace of \mathcal{A}. We introduce

$$
e_{\alpha}^{(\beta)}:=\partial^{\beta} \mathcal{D}^{\alpha}(f \otimes g)
$$

which are again elements of \mathcal{B}. For these elements one can prove the following lemma.
Lemma 2. $\quad\left\{e_{\alpha}^{(\beta)}\right\}$ is a basis for \mathcal{B}.
Proof. The proof (by induction on the number of independent variables n) is based on the observation that $\mathcal{D}^{\alpha}(f \otimes g) \notin \sum_{r=1}^{n} \operatorname{Im}\left(\partial_{r}\right)$.

Identifying \mathcal{B} with a subspace of \mathcal{A}, we can define \mathcal{D}_{r} (and ∂_{r}): $\mathcal{B} \otimes \mathcal{B} \rightarrow \mathcal{B} \otimes \mathcal{B}$. In $\mathcal{B} \otimes \mathcal{B}$ we define the subspace \mathcal{C}, spanned by the elements

$$
\mathcal{D}^{k}\left(\mathcal{D}^{l}(f \cdot g) \otimes \mathcal{D}^{m}(f \cdot g)\right) \quad(k, l, m \in J)
$$

Thanks to lemma 2, these elements are linearly independent, i.e. they form a basis for \mathcal{C}. This shows that finding identities of the form (6) is equivalent to finding $\operatorname{ker}(\pi) \mid \mathcal{C}$. Before turning to $\operatorname{ker}(\pi)$ we mention:

Lemma 3. Let \mathcal{B} and \mathcal{C} be as above. Then $\mathcal{B} \otimes \mathcal{B}=\mathcal{C} \oplus \operatorname{Im}(\partial)$, where $\operatorname{Im}(\partial):=$ $\sum_{r=1}^{n} \operatorname{Im}\left(\partial_{r}\right)$.

Expressed in normal derivatives, $\left.\operatorname{ker}(\pi)\right|_{\mathcal{B}} ^{\otimes} \mathcal{B}$ is easily described.
Lemma 4. $\left.\operatorname{ker}(\pi)\right|_{\mathcal{B}} ^{\otimes} \mathcal{B}$ is generated by
1.

$$
\begin{array}{ll}
\text { 1. } & f^{(i)} g^{(j)} \otimes f^{(k)} g^{(l)}-f^{(k)} g^{(l)} \otimes f^{(i)} g^{(j)} \\
\text { 2. } & f^{(i)} g^{(j)} \otimes f^{(k)} g^{(l)}-f^{(i)} g^{(l)} \otimes f^{(k)} g^{(j)}
\end{array}
$$

The elements mentioned under 1 give rise to trivial identities, namely the identities

$$
D^{k}\left(D^{l}(f \cdot g) \otimes D^{m}(f \cdot g)\right)=(-1)^{|k|} D^{k}\left(D^{m}(f \cdot g) \otimes D^{l}(f \cdot g)\right)
$$

To analyse the elements under 2 , we introduce d_{r} and $\bar{d}_{r}: \mathcal{B} \rightarrow \mathcal{B}$, defined by

$$
d_{r}\left(f^{(i)} g^{(j)}\right)=f^{(i+1 r)} g^{(j)}, \bar{d}_{r}\left(f^{(i)} g^{(j)}\right)=f^{(i)} g^{(j+1 r)} .
$$

The elements $f^{(i)} g^{(j)} \otimes f^{(k)} g^{(l)}-f^{(i)} g^{(l)} \otimes f^{(k)} g^{(j)}$ are precisely the homogeneous terms in

$$
\begin{align*}
\exp \left(\sum _ { r = 1 } ^ { n } \left(\alpha_{r} d_{r}\right.\right. & \left.\left.+\beta_{r} \bar{d}_{r}\right)\right) f \cdot g \otimes \exp \left(\sum_{r=1}^{n}\left(\gamma_{r} d_{r}+\delta_{r} \bar{d}_{r}\right)\right) f \cdot g \\
& -\exp \left(\sum_{r=1}^{n}\left(\alpha_{r} d_{r}+\delta_{r} \bar{d}_{r}\right)\right) f \cdot g \otimes \exp \left(\sum_{r=1}^{n}\left(\gamma_{r} d_{r}+\beta_{r} \bar{d}_{r}\right)\right) f \cdot g \tag{7}
\end{align*}
$$

Using $\partial_{r}=d_{r}+\bar{d}_{r}$ and $\mathcal{D}_{r}=d_{r}-\bar{d}_{r}$, we can rewrite (7) in terms of ∂_{r} and \mathcal{D}_{r} : turns into

$$
\begin{align*}
& \exp \left(\frac{1}{4} \sum\left(\alpha_{r}+\beta_{r}+\gamma_{r}+\delta_{r}\right) \partial_{r}\right)\left\{\exp \left(\frac{1}{4} \sum\left(\alpha_{r}+\beta_{r}-\gamma_{r}-\delta_{r}\right) \mathcal{D}_{r}\right)\right. \\
&\left(\exp \left(\frac{1}{2} \sum\left(\alpha_{r}-\beta_{r}\right) \mathcal{D}_{r}\right)(f \cdot g) \otimes \exp \left(\frac{1}{2} \sum\left(\gamma_{r}-\delta_{r}\right) \mathcal{D}_{r}\right)(f \cdot g)\right) \\
&-\exp \left(\frac{1}{4} \sum\left(\alpha_{r}+\delta_{r}-\gamma_{r}-\beta_{r}\right) \mathcal{D}_{r}\right)\left(\exp \left(\frac{1}{2} \sum\left(\alpha_{r}-\delta_{r}\right) \mathcal{D}_{r}\right)(f \cdot g)\right. \\
&\left.\left.\otimes \exp \left(\frac{1}{2} \sum\left(\gamma_{r}-\beta_{r}\right) \mathcal{D}_{r}\right)(f \cdot g)\right)\right\} \tag{8}
\end{align*}
$$

Changing variables

$$
\begin{array}{ll}
\bar{\delta}_{r}=\frac{1}{4}\left(\alpha_{r}+\beta_{r}+\gamma_{r}+\delta_{r}\right) & \bar{\alpha}_{r}=\frac{1}{4}\left(\alpha_{r}+\beta_{r}-\gamma_{r}-\delta_{r}\right) \\
\bar{\beta}_{r}=\frac{1}{2}\left(\alpha_{r}-\beta_{r}\right) & \bar{\gamma}_{r}=\frac{1}{2}\left(\gamma_{r}-\delta_{r}\right) \tag{9}
\end{array}
$$

expression (8) transforms into

$$
\begin{align*}
\exp \left(\sum \bar{\delta}_{r} \partial_{r}\right) & \left\{\exp \left(\sum \bar{\alpha}_{r} \mathcal{D}_{r}\right)\left(\exp \left(\sum \bar{\beta}_{r} \mathcal{D}_{r}\right)(f \cdot g) \otimes \exp \left(\sum \bar{\gamma}_{r} \mathcal{D}_{r}\right)(f \cdot g)\right)\right. \\
& -\exp \left(\frac{1}{2} \sum\left(\bar{\beta}_{r}-\bar{\gamma}_{r}\right) \mathcal{D}_{r}\right)\left(\exp \left(\frac{1}{2} \sum\left(2 \bar{\alpha}_{r}+\bar{\beta}_{r}+\bar{\gamma}_{r}\right) \mathcal{D}_{r}\right)(f \cdot g)\right. \\
& \left.\left.\otimes \exp \left(\frac{1}{2} \sum\left(-2 \bar{\alpha}_{r}+\bar{\beta}_{r}+\bar{\gamma}_{r}\right) \mathcal{D}_{r}\right)(f \cdot g)\right)\right\} \tag{10}
\end{align*}
$$

Since (9) is an invertible transformation, the homogeneous terms in (10) span the same space as in (7). For $\left.\operatorname{ker}(\pi)\right|_{\mathcal{C}}$ we only need to consider the coefficients in which $\bar{\delta}$ does not appear (see lemma 3). Hence we are left with the expression between braces, which is identical to theorem 1 for $a=c=f$ and $b=d=g$. So these (and the trivial ones) are all identities.

I would like to thank Professors Conte and Martini for drawing my attention to this problem.

References

[1] Hirota R 1974 A new form of Bäcklund transformations and its relation to the inverse scattering problem Prog. Theor. Phys. 52 1498-512
[2] Hirota R 1980 Direct methods in soliton theory Solitons ed R K Bullough and P J Caudrey (Berlin: Springer)
[3] Post G 1990 Bäcklund transformations and identities in bilinear form Memorandum 856 University of Twente, The Netherlands

