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COMMENT 

On Backlund transformations and identities in bilinear form 

G Post 
Faculty of Applied Mathematics, University of Twente, PO Box 217, 7500 AE 
Enschede, The Netherlands 

Received 6 July 1990 

Abstract. For bilinear equations of the form P ( D ) f  . f = 0 we find all possibilities 
for rewriting g 2 P ( D ) f  f - f 2 P ( D ) g .  g = 0 in the form Q ( D ) f .  g = 0. This is the 
first step in finding a Baddund transformation. 

1. Introduction 

In this comment we study Backlund transformations in bilinear form. This technique 
was introduced by Hirota [1,2]. Let us start  with a brief sketch of the method, and 
formulate the questions that we want to answer. We suppose that we are given an 
equation in bilinear form 

Here P is a polynomial in, say, n variables, i.e. 

P ( D ,  , .  . . , Dn) = cQDQ 

where (Y = (a1, . . . , an)  and D" = 0,"" . . .DY' , where 

x g(" 1 - Y 1 >  , ' 2, - Yn 1 
y 1 = . .  = y , = o  

To find a Backlund transformation, we apply the following trick: consider the equation 

g 2 P ( D ) f . f - f 2 P ( D ) g . g  = 0 .  (2) 

Then we note that for a solution f, g to (2) ,  the following holds: 

f is a solution of (1) e g is a solution of ( I ) .  

Suppose that we could rewrite (2) in the following form: 

O(o>[O,(o)(f ' 9 )  ' & 2 ( D ) ( f  . g ) l  = 0 (3) 
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Then by suitably splitting Q we derive two equations: 

P,(D)f ' 9 = 0 
P , ( D ) f  ' g = 0. (4) 

The system (4) can be called a Backlund transformation for P ( D ) f  . f = 0. Namely, 
suppose g is given; then a solution f to equation (4) will also satisfy P ( D ) f  f = 0.  

The  process of sensibly splitting Q is strongly equation-dependent; it  seems unclear 
in general how to  perform it.  Two  other general questions remain: 

1. Is there for any P a solution Q? 
2.  Is this solution unique? If not, can one find all possibilities? 

In this comment we answer these questions. The  answer to the first is yes; the 
proof is already essentially in Hirota [ l , 2 ] .  This solution is not a t  all unique. We 
give all possibilities in terms of a generating identity. The  proof tha t  these are all 
the possibilities is the most difficult par t ,  and not fully included here. For complete 
proofs, see [3]. 

2. Algebraic background: partial solution 

Let J denote the space of multi-indices ( i l l . .  . , in). In practice we will encounter 
f ( i )  and g ( J )  ( i , j  E J ) ,  which will substitute for the partial derivatives. We will deal 
with the polynomial algebra A = R [ f ( i ) , g ( J ) ] ,  ( i , j  E J ) .  In this algebra, we have 
derivations a, ( r  = 1 . . n )  which act in the obvious way. In particular 

ar(fW) = f ( i + l P )  and ar(g(j))  = g ( j t l T )  

where 1, = (0,. . . ,O, 1,0,. . . ,O), the r th  basis vector. 

map  A @d -+ A @ A,  by 
Corresponding to  a,, we introduce the linear map V, (the Hirota derivative) as a 

v,(~ @ b )  = a,(a) @ b - a @ a,(q 

a,(a @ b )  = a,(a) cz b + a 8 a,(b). 

( r  = 1 , .  . . ,.) 

The  derivative a, is also extended to A 8 A by 

Obviously, we can define a Hirota derivative corresponding to any derivation of A .  

Lemma 1. Let V = V, and 8 = a, and A be as above. Then 

exp(cV)(a @ b )  = exp(cd)a @ exp(--cd)b. 

The  equality is meant as formal power series, and follows by computing homogeneous 
terms with reference to c i ,  i = 0 , 1 , 2 , .  . . , 

Note tha t  our definition of V, differs from the usual one in the following sense: 
the image is again in A 8 A and not in A. This is a major difference, as we will see 
shortly. To get the usual Hirota derivatives D, we have to  project the image of V, to 
A: let x : A 8 A - A,  .(E ai @ b , )  = C a i b i ,  denote this projection. Then 

Dr(a @ b )  := irV,.(a 9 b )  

and more generally 

D,"(a @ b )  := ~ V t ( a  @ b ) ,  k = 1 , 2 ,  ... . 
The exchange formula is central in this comment. 
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Theorem 1 (cf Hirota). Let d, = Ccrid,, a, = CPiai and 8, = C Y i d i  and let 
D,  etc. be the corresponding (projected) Hirota derivatives. Then we have for all 
a ,  b , c , d  E A 

Proof. 
and projecting on A gives the result immediately. 

The  proof is based on lemma 1: expressing all the V in their corresponding d 

Note tha t  this identity solves our first question by taking a = b = f and c = d = g .  
Using the fact tha t  e x p ( C c i V i )  = n e x p ( c i V i ) ,  we see that for three multi-indices 
k, I ,  m E J ,  the coefficient of crkp'ym in (5)  expresses 

in terms of 

D"(D"(f ' g )  ' D , , ( g  ' f)). 

Moreover we note tha t  such an  expression is not unique. If we take a = c = f 
and b = d = g ,  then again comparing the coefficients of crkp'ym in ( 5 ) )  we see that 
D k ( D ' ( f  . g) . D n ( f .  9 ) )  can be re-expressed. These observations solve a part of our 
problem; however, they do not solve the most difficult part .  I t  is important to find a l l  
possibilities, hence all identities of the form 

Dk(D'(f.g).Dm(f.g)) = z D , ( D . . ( f . g )  ' D . . ( f . g ) ) .  (6) 

This problem will be solved in the next section. The  answer is slightly surprising: 
equation (5) already contains all non-trivial identities! 

3. Finding all identities 

TO study the identities of the form (6) more closely, we introduce two subspaces of 
A @ A. The first one, denoted by B ,  is the linear space spanned by the element,s 
{ f ( i )  €3 g ( j ) } ,  ( i , j  E J). Clearly these elements form a basis. Note tha t  T la is 
injective. This allows us to view B as a subspace of A. We introduce 

e p  := apVo"(f @ g )  

which are again elements of B .  For these elements one can prove the following lemma. 

Lemma 2. {ei')} is a basis for B. 

Proof. 
on the observation tha t  D " ( f  @ g) 

The  proof (by induction on the number of independent variables n )  is based 
E:=, Im (a,.). 
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Identifying B with a subspace of A, we can define Vr (and 8,) : B 8 U --+ B €9 B .  
In B @ B we define the subspace C ,  spanned by the elements 

Thanks to  lemma 2, these elements are linearly independent, i.e. they form a basis for 
C. This shows that finding identities of the form (6) is equivalent to  finding ker ( T )  IC. 
Before turning t o  ker ( T )  we mention: 

Lemma 3. Let B and C be as above. Then B €9 B = C 43 Im (a), where Im(8) := 

CL1 Im(ar) .  

Expressed in normal derivatives, ker ( T )  l ~ ~ a  is easily described. 

The  elements mentioned under 1 give rise t o  trivial identities, namely the identities 

D k ( D ' ( f . g ) @ D D " ( f . g ) )  = ( - l ) ' k ' D k ( D m ( f q )  W l ( f . 9 ) ) .  

Using ar = dr + dr and Vr = d, - d;., we can rewrite (7) in terms of 8, and Vr :  (7) 
turns into 
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Since (9) is an invertible transformation, the homogeneous terms in (10) span the same 
space as in (7). For ker(n) (c we only need to consider the coefficients in which 6 
does not appear (see lemma 3).  Hence we are left with the expression between braces, 
which is identical to  theorem 1 for a = c = f and b = d = 9 .  So these (and the trivial 
ones) are all identities. 

I would like to thank Professors Conte and Martini for drawing my attention to this 
problem. 
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